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lo OVERVIEW

This research should lead to the development of new nonlinear methodologies for the adaptive

The presentcontrol and stability analysis of high angle-of-attack aircratt such as the F18 (FIARV).

progress report reviews project research over the second year.

The emphasis has been on nonlinear adaptive control, but associated model development, system

identification, stability analysis and simulation is performed in some detail as well. Table 1 summarizes

various models under investigation for different purposes.

Models and simulations for the longitudinal dynamics have been developed for all types except 7

in Table 1. A very preliminary analysis has been made on type 6 (neural net models) for adaptive control

thus far. It has been shown that dynamic accuracy roughly increases with ascending order of model type

from 1 to 7, except that perhaps 3 (Volterra series) and 6 (neural nets) should be interchanged. However,

such comparisons depend on how the models are utilized. For example, the neural-net model and

subsequent control seems to be more accurate than 1 to 5 for flight profiles outside _t priori data sets.

Here, the focus is on adaptive control, generated by model-reference types 1 to 6, of a complex nonlinear

aircraft motion represented by 7 (nonlinear ordinary differential equations). Preliminary analyses use a

nonlinear second-order approximation [1] which we found useful for changes in angle of attack (t_) by

about 10 ° or possibly 20 °. A fifth-order nonlinear longitudinal model with the traditional stability

derivatives generated as functions primarily of et, for a given altitude and roach number, successfully

mimicked F18 flight trajectories [2], and is being utilized for our nonlinear adaptive-control studies at

the present time. These models are discussed in the project's first annual report [3]. Simulations and

studies reported here refer to the complex (fifth-order) longitudinal model unless otherwise noted.

Briefly, studies completed indicate that nonlinear adaptive control can outperform linear adaptive

control for rapid maneuvers with large changes in c_. Figures 1 and 2 compare the transient responses

where the desired o_ varies from 5 ° to 60 ° to 30 ° and back to 5* all in about 16 see. Here, the

horizontal stabilator is the only control used with an assumed first-order linear actuator with a 1/30 see



1°

2.

3.

4,

5.

6.

7.

8,

Table 1. Aircraft Models

Type

Linear perturbations de-

sired a, M, h*

Gain scheduled (nonlinear

function of a) from 1

Voiterra series#

a) at reference states

b) general case

Bilinear system

a) continuous

b) BARMA

Polynomial time series

Neural network

Nonlinear ordinary differ-

ential equation model

Nonlinear partial differ-

ential equations model

Purpose I

Local control, check of nonlinear system,

application of well developed linear con-

trol methodologies

Local stability

Gain-scheduled adaptive control based on

well developed methodologies

Simplified description of complex system

Approximate stability

Nonlinear adaptive control via cross-corre-

lation and/or _l priori dynamic structure

Stability approximation

Simplified dynamic description of complex

system

Nonlinear adaptive control via model

reference identification (NLMRAC)

Stability approximation

Simplified dynamic description

Potential application to adaptive control

Accurate approximation to fast large ma-

neuvers for "final" design and simulation

Stability

Allows the treatment of distributed exter-

nal stresses and local pressures as well as
internal stresses and deformations

Remarks/Limitations

Only vafid for small maneuvers

Special case of types 2-5

May have stability problems with
small number of reference states

and/or large fast maneuvers

Non-orthogonal series approximation

Sufficiency of 2 or 3 kernels

Large computation time for adapta-
tion

Large computation time

Bilinearizing controllers may be

more practical than linearizing ones

Polynomial approximation may be
more accurate but more time con-

suming than linear or bilinear ap-

proximation

Probably less accurate than 4 or 5

for a given data set but accuracy

may be more robust outside the
available data set

Neglects flexible modes and other

complications

Computations are time consuming

Overall model complexity

Allows one to treat flutter and dis-

tributed control strategies, etc.

*cz is angle of attack, M mach number, and h altitude

#Wiener series can be used for orthogonal representation
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timeconstant.Unfortunately,anadditionalrateconstraintsignificantly reduces the system performance

for both the nonlinear and linear adaptive control as shown in Figures 3 to 5 and analyzed in the next

section. Such lack of controllability can be improved, of course, by introducing thrust vectoring as used

in [2]. Appropriate thrust-vector control to supplement the traditional pitch-motion stabilators is

underway for the nonlinear adaptive controllers, and preliminary results are encouraging.

A preliminary analysis of time-optimal control of c_ is studied in Section 3. Here, a new algorithm

is derived from the switching-time variational method [4,5] and then applied successfully to the simplified

second-order nonlinear model [1]. The method has been adapted to the more complex nonlinear fifth-

order model and new simulations are in progress. This study should provide a "yard stick" by which to

evaluate controller performance as well as provide a base for more effective controller designs. For

example, it might be used in conjunction with a neural-net generated approximately, time-optimal

feedback controller as introduced in Section 5.2. As a byproduct of this analysis the complicated

Jacobian of the longitudinal dynamics will be computed as a function of et and other variables. While

it is used here to compute bang-bang controller switching times, it should have other uses for approximate

dynamic-system identification beyond the usual time-invariant linearized models at trim states.

Nonlinear PIF (proportional plus integral plus filter) control as a generalization of the linear PIF

control is being studied. The linear PIF controller developed by Ostroff at NASA-LaRC has shown

remarkable success in simulations as demonstrated in [4] and by more recent simulations and flight tests

at NASA-LaRC on HARV. The first nonlinear PIF controller which we are investigating involves a

bilinear (linear with parametric control) model reference for basic control philosophy. For example, the

PIF model reference may be established from a simplified/approximated time-optimal solution. Then a

bilinearization of the complex nonlinear aircraft about say an approximate time-optimal trajectory can be

used to generate the PIF control by possibly an optimal control such as with a quadratic performance

index. This is introduced briefly in Section 5.1.
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Trajectory

Feedback linearization and variable-structure or sliding-mode control also are being investigated

in this project. Both generally have major robustness problems for complex nonlinear dynamics with

major unknown components and control constraints such as HARV due to aerodynamic stability-derivative

uncertainty and available actuators. However, they might be useful as a foundation for more complex

nonlinear controller design synthesis. Also, they can be useful to provide benchmarks of performance

for comparison with time-optimal controls and other nonlinear controls studied here. At the other

extreme, a comparison with robust linear controllers will also be made.

A cursory analysis (presented in Section 4) suggests that robust linearizing controllers (as well as

robust linear controllers) of sufficient complexity may very well stabilize the longitudinal HARV motion

for even large deviations from trim flight, but there most likely would be considerable reduction in

maneuverability along with transient overshoot -- the two of which exhibit some tradeoff. It should be

6



notedherethatlinearadaptivecontrolreallyinvolvesnonlinear feedback which can be thought of as a

bilinear system (linear system with parametric control). In conjunction with linear model-reference

adaptive control, the nonlinear feedback essentially becomes a feedback-linearization process, and again

may suffer the corresponding drawbacks in practice.

Also, it should be noted that ideally, at least, the sliding-mode control (with probable chatter) can

conveniently be implemented to accommodate state constraints (as an alternative to excessive overshoot)

such as can arise from the time-optimal case. But, again, its feasibility with the physical actuator's rate

and accelerating constraints needs to be studied further.

Finally, linear stability arguments are developed in Appendix C which tend to at least an

approximation of the admissible range of model parameters as applied to the nonlinear second-order

approximation [1].

o

where

NONLINEAR MAC ALGORITHM STATUS

Model algorithmic control (MAC), described in [3], starts with

_ref(k+l) = _mod(k+l) + (_(k) - Otrnod(k))

Otmod(k+l)_-pT q_(k)

O)

(2)

*(k) = [ct,ot2,ct3,q,qot,qa2,qc_3,u,ua,ua2,ua3,1]T(k)
(3)

As the control at the moment k must be already computed at moment k the values of a(k) and q(k) are

not available for its computation so their estimates must be used instead.

to be the prediction error from the moment k-I and the equation becomes

C_ref(k+l) = &mod(k+l) + (c_(k-l)- Otmod(k-l))

The correction term is taken

(4)

7



with

_mo_(k÷l}-- pT _{k}

[ ]"_(k) ; &,&2,&3,q,q&,q&2,q&3,u,u_,u&2,u&3,1 (k)

S(k) -- p_ _(k-1) ÷ (_(k-1) - _m._(k-1))

q(k) -- pqT,(k_l) ÷ (q(k-1) - qm_(k-l))

The controller is assumed to know the values of angle of attack and of pitch rate at the moment k-1.

Then it estimates their current values _(k) and q(k) taking into consideration previous prediction errors,

and based on them it calculates the control required to achieve o%f at the moment k+ I. The value of

control is found as:

u(k) = &r - Pla & - P2_ &2 - P3_ &3 - P4a_ - P5a_l & - P6a_ &2 - P7a_l &3 - Pl2a (5)

Psa + Pga&Pl0_ &2 + Plla &3

where

&r = Ctref(k+l) -(t_(k-1) - Otmod(k-1)) (6)

and d_ = &(k), c1 = _(k) as described above.

This algorithm was made to be adaptive, or self-tuning, by incorporating on-line identification of

the parameters. A recursive least squares (RLS) algorithm was implemented in the form taken from

p(k) = Q(k-2) t_(k-1) (7)
),(k-l) * t_(k-l) T Q(k-2) _(k-1)

Q(k-1)- h(l_l)[Q(k-2)- Q(k-2)_b(k-1)th(k-1)TQ(k-2) ]_,(k-l) + _b(k-1) T Q(k-2) ¢_(k-1)

(8)

e(k-l) = y(k) - pT_(k-1) (9)



wherey maydenotea or q and p may stand for Pa or pq, respectively. The forgetting factor h was

introduced to enable the algorithm to change the estimates of parameters with the change of operating

conditions. To avoid the unlimited growth of covariance matrix Q at the steady state when the input is

not persistently exciting, the variable forgetting factor policy was implemented:

X(k) = 1 - e e(k)2
2

(10)

where

with Ymod, .Yras before.

function:

J = (Ymod(k+l) - _r(k)) 2 + p(u(k) - u(k-1)) 2

Minimization of (11) with respect to u(k) yields

u(k) = (Yr - a)b + pu(k-l)

b 2 +p

a =PlaC¢ + P2aC_2 + p3aa 3 + P,laq+ P5aqa + P6aqct2+ P7aq°t3 + Pl2a

o PllaOt3b = Psa + P9d v + PlOa0¢-+

Obviously, for p = 0 (12) reduces to (5) while for p = a, we have u(k) = u(k-1) = const.

This controller is used in Figures 2, 4, and 5 with only the linear portion of a,b used in Figures

1 and 3. The algorithm will be generalized to include thrust vector control and variable-horizon cost.

(II)

(12)

where e(k) is the current prediction error, e(k) is the average prediction error from last 10 samples, and

e is equal to 0.01. As an additional precaution, the trace of the covariance matrix Q was monitored and

Q was reset to diagonal matrix whenever the threshold value was exceeded.

To further damp the response, the controller is designed to minimize the one step ahead cost



3. TIME-OPTIMAL CONTROL

3.1 Introduction

Various control strategies have been developed by the team and to find their merits it seems useful

to have an idea of what are the best output and state trajectories theoretically possible, given the existing

constraints on the control variables. For substantially nonlinear systems the problem of synthesis of the

optimal feedback control law is usually untractable. On the other hand, there exist numerical techniques

that allow us to calculate "open loop controls" - i.e., the specific control signals necessary to achieve the

minimum performance index. Aware of the difficulties connected with the controller synthesis problem

we do not seek its exact solution; at this time, we merely want to find the limit for the performance of

a controller assuming perfect knowledge of plant dynamics and absence of any unforeseen disturbances.

This report is concerned with the problem of time-optimal control in which we are interested in

transferring the system's state from an initial value to some prescribed terminal set in minimal time. In

the aircraft problem this might mean changing the flight's pitch angle, path angle, or angle of attack from

an initial equilibrium value to some other terminal value, preferably also with all other states moving to

the equilibrium. The control value (stabilator or elevator angle) is naturally bounded from below and

from above. For some systems it turns out that in case of such simple cube-type constraints on control

variables, the time-optimal control is of bang-bang type. However, for quite a large class of systems that

are affine in control, we may approximate any measurable control signal with a bang-bang signal with

arbitrary accuracy in the sense that corresponding state trajectories are arbitrary close to each other in

L 1 metric. Hence, also time-optimal control, if it exists, may be approximated by a bang-bang control,

even if it contains singular arcs. Therefore, the approach presented here is to find the bang-bang control

that will minimize the transition time. The computational algorithm used here is the switching-time-

variation method developed in [4,5]. Since the algorithm gives as an output a control signal with finite

number of switchings, it is tacitly assumed that with large enough finite number of switchings, we are

able to achieve good enough approximation of optimal control. This, unfortunately, does not follow from

10



the theory I am aware of, since the above mentioned approximation result holds only for bang-bang

signals with possibly infinite or even uncountable number of switchings. This delicate question is left

aside for the time being to be clarified later. Another point worth indicating here is that resulting control,

in an attempt to approximate a continuous "singular" control, may have inter-switching times very small,

thus precluding any practicality of the approximation. This, however, is of no concern to us since, as

mentioned before, we are interested only in finding the best possible output, or state, trajectories - not

the actual control signals corresponding to them at this time.

A computer program has been developed for numerical solution of the problem. The program, due

to its modular construction, easily allows various plant models to be plugged into it. The switching-time-

variation method is used in it for fixed terminal time with the quality function being the weighted distance

of the target set. Then the smallest such time is found that allows it to hit the target exactly, and finally

the optimal number of switchings is iteratively found that gives minimal transition time.

In what follows the switching-time-variation method is briefly characterized in Section 3.2. Section

3.3 discusses briefly the approximation theorem for bang-bang controls in systems affine in control. The

computer implementation of the algorithm is discussed in Section 3.4. Section 3.5 contains the test

results of the program for a second-order model of longitudinal dynamics of an aircraft. The concluding

remarks discuss the possibilities of application of the computer package to solutions of more complex and

problems more close to reality.

3.2 Switching-Time-Variation Method

The switching-time-variation method used here was taken from [4], and the original thesis [5] was

also consulted for the details. The method is designed for the computation of optimal control in the class

of bang-bang control signals with finite number of switchings. The quality criterion is assumed to be

J = I_ f(fO(x) + gO(x) u(t))dt (13)

11



for the system of the form

dx f(x) + g(x) u(t) (14)
dt

where x e Rn, u e R1, t e [to,tfl.

are assumed to be continuously differentiable with respect to x.

To ensure the existence and uniqueness of solutions of (14), f and g

-1 < u(t) < 1

The control values are constrained by

(15)

Of course, any control constraints of the cube-like type Umin <_ U(t) < Um_ may be transformed to form

(15) for system affine in control. The control objective is to minimize the quality criterion (13) for given

initial state x o with possible penalty term connected with final state already included in fo and go by

standard transformations, assuming that admissible controls are bang-bang with finite number of

switchings. The version of the algorithm described in [4] was developed for systems with scalar controls

and the computer program described here is also designed for this special case. However, it is not of

any particular difficulty to generalize the algorithm to the case of u e R m. If the need arises, the

computer program may also be modified to accommodate this possibility. Here the scalar version will

be presented because of its notational simplicity.

The method is an iterative one - in each step the gradient of the quality criterion with respect to

switching times is computed. The switching vector is defined as:

r = (rl,...,rtq) (16)

where N is the number of switchings, with constraints:

to < r I < ... < rN -< tf (17)

The control value on the interval [ri,ri+l) is then equal (-1) i. The augmented system is defined as:

d_ = ?(_) + g(X)u(t) (18)
dt

12



where _ = (f0,fT), _T = (g0,gT), iT = (0,xT), and the adjoint system equation is

[ ,, ITdX 0f 0_ (t) u(t) X (19)
= - g/,t, ÷d--i"

with terminal conditions Xi(tf) = (OllOii)(tf). Then the gradient of the quality criterion with respect to

the switching vector may be calculated by means of the formula

aJ = (_l)i-1 _(ri ) (20)
ar i

with function _ defined by

with gradient calculated the method consists of iterative descent steps

aI (22)
ri(k+l ) = ri(k ) + ki_r i

where ki are such that constraints (17) are satisfied and sufficiently small to ensure that J(k+ 1) < J(k).

The algorithm is terminated if either the gradient is zero or no feasible (i.e., descent) step may be

executed.

On top of the algorithm of finding the optimal switchings with their number given there is an outer

loop modifying this number. If the optimal control results in a constraints r i < _'i+1 active than the

switchings i and i+ 1 should be removed. On the other hand, if there are two zeros of _(t) not coinciding

with any of the switching times than two switchings should be added between these zeros. After the

modifications of the dimensionality of the switching vector the inner loop of optimization is again

performed and the process is terminated when no more changes of the number of switches are necessary.

It is worth noticing that the above algorithm of finding the optimal bang-bang control may be also

generalized for broader class of systems dx/dt = f(x(t),u(t)). The main difference would be the formula

for function _(t0) which would become

13



Of course,thetechnicalassumptionsensuringtheexistenceof solutionsshouldbesatisfied.

3.3 Approximation for Systems Affine in Control

The algorithm described above calculates the optimal control within the class of bang-bang control.

However, for systems affine in control a result is available stating that we may approximate an arbitrary

admissible control with a bang-bang control such that corresponding trajectories are arbitrary close.

The theorem, stated and proven in [6], assumes that we have a system of the form (14) with

constraints (15). Functions f and g are continuously differentiable, and a Lipshitz type condition

<f(x) + g(x)u,x > _< K(l + Ilxll2)preventing finite escape-time is also assumed to be satisfied for all

x in the region of interest. Then an arbitrary measurable control signal u(t), t e [to,tf] satisfying (15) is

considered with corresponding state trajectory x(t). Then the theorem states that given any e > 0 is

always possible to find a bang-bang control u*(t) satisfying [u*(t) [ < I, such that the corresponding state

trajectory x*(t) approximates x(t) uniformly on [to,tf] with accuracy less than e, i.e., Ix(t) - x*(t) l <

for all t e [to,tf].

Although the theorem stated above considers a bang-bang control with not necessarily finite or even

countable number of switchings, it gives some justification to using the switching-time-variation method

for systems with singular optimal controls. Intuitively for reasonably smooth systems there should be

some kind of continuity enabling in turn approximating the bang-bang control u* with a sequence of bang-

bang signals u with finite number of switchings. However, we are not aware of any such result, and in

monograph [7] from 1990 the aforementioned result is cited after [6] as the only one available. It still

seems feasible to come up with some, maybe more restrictive, assumptions which would justify using

finite number of switchings.

14



3.4 Computer Implementation

The algorithm discussed in Section 3.2 was implemented as a quite general software package. It

finds the time-optimal control for the case when the terminal set is a single point y. The time-optimal

problem with fixed terminal set is replaced with a sequence of fixed time and free terminal state problems

with quality index

Switching-time-variation method is used to solve this problem, and the desired final time is decreased if

the resulting quality is zero or is increased in the opposite case. This iteration is repeated until we get

to the limit time tf below which the quality is always positive, i.e., it is not possible to find a bang-bang

control transferring the system from xo to y.

The optimization method described in Section 3.2 was modified somewhat in details of the gradient

minimization routine. Instead of performing single step in the direction, a directional search is performed

with constrained step size. A combination of two-point gradient parabolic approximation and three-point

non-gradient parabolic approximation is used to find the minimum in the direction. The generation of

the descent direction is also somewhat different. First, if any of the constraints (15) are active and the

gradient points outside the feasible region, the gradient is projected on the proper constraining

hyperplane. The special structure of constraints causes the projection to consist solely of putting the

appropriate coordinates of the gradient to zero. Then the direction is tangent to the constraining

hyperplane, and we get an optimization problem of reduced dimensionality. This problem is solved using

a conjugate gradient method in the version proposed in [6]. The conjugate gradient is restarted not only

every N iterations, where N is the current dimensionality of the problem, but also whenever the set of

active constraints changes - i.e., when the algorithm hits or leaves a constraining hyperplane. The

termination of the procedure occurs when the projected gradient is zero - i.e., no feasible descent step

is possible, or equivalently when the dimension of the current optimization hyperplane becomes zero.

15



Thecalculationof the quality criterion and of its gradient involves numerical integration of Eqs.

(18) and (19). This is done using a fourth-order Runge-Kutta integration method. To integrate the

adjoint equation (19) the whole state trajectory resulting from integrating (18) must be stored, but for

calculation only a small number of points from the costate trajectory is needed.

The program is written in the fashion enabling easy substitutions of different plant models and

different optimization tasks. To use another model one has simply to provide the routines calculating the

right-hand sides of Eqs. (18) and (19). The problem is defined in a straightforward fashion by setting

the values of initial state, terminal state, initial estimate of the final time, etc., in the main routine. The

whole program is written in C programming language, and although compiled and run on an IBM PC,

it may be easily ported to any machine with C language compiler. The only difficulty that may occur

with more complex systems is the rather severe storage requirements - whole state trajectory has to be

stored with sufficiently small discretization step in order to calculate the gradient. And, of course, there

will always be the problem with the speed of calculations for higher dimensional systems.

The program described above was tested on a model previously used (in our NASA project), i.e.,

a simplified longitudinal aircraft model of second order described in [6]. For the aircraft model the

problem solved was to increase or decrease the value of angle of attack between trim states. The control

signal, the elevator angle, was assumed to be between 0 and -20 degrees. A series of maneuvers were

simulated and reported in [8]. A typical case is shown in Figures 6a and b for maneuvers between 0 °

to 20 ° and 20 ° to 0 °. It may be observed that the time-optimal control has only one switch for the

simplified nonlinear model, but the trajectory for t_ had a substantial overshoot, and consisted of an

almost linear first portion with high slope before the switch and of slowly decreasing second portion.

The computer program presented here is suitable for calculating the time-optimal controls for

arbitrary finite-dimensional systems which are affine in control. The simulation results discussed here

have mainly testing value showing that the program is in operation. The next step, which is nearing

completion, uses the program on more complex models such as a fifth-order longitudinal-aircraft model
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with a linear actuator and affine in control. The resulting time-optimal trajectories for different

maneuvers could be used as benchmark tests for other controllers or as reference trajectories for time-

series-based, adaptive, PIF, one-step-ahead (or many-steps-ahead) control.

For large variations in pitch and angle of attack of the complex model it is found that numerous

switchings are required and it appears that for extreme cases a singular solution exists for the time-

optimal control. (Such solutions evolve when extremal trajectories exist with a zero-valued control

switching function.) To handle such cases more efficiently and more accurately, a new algorithm was

developed which solves the optimal control problem for a sequence of fixed terminal times with quadratic

criteria in errors about the desired terminal state.

Figures 7 and 8 show simulated examples of F-18 maneuvers from trim with pitch

0(0) = o_(0) = 5 °, stabilator angle 6(0) = -7 °, and constant thrust force of 2956 pounds without thrust

vectoring and actuator velocity constraints beyond the 30 sec -1 lag. Figures 7 and 8 show the simulated

time-optimal maneuvers from this trim state to 0 = 40 °, ot = 30 °, q = 0 = 0 in about 1.4 sec. and to

0 = 80 °, , = 72 ° in about 1.9 sec. These results are considered to be of a preliminary nature with

further system complications (thrust vector control, actuator rate limits, etc.) being incorporated into the

analysis.

4. SLIDING-MODE CONTROL AND FEEDBACK LINEARIZATION

Sliding-mode control and feedback iinearization can be used in an integrated manner sometimes to

control effectively nonlinear dynamical plants. Unfortunately, both can suffer considerable performance

deterioration in the presence of dynamic uncertainty and control constraints for some physical applications

[3,9]. These aspects need further study with the material presented here only a start.
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4.1 Sliding-Mode Control (SMC)

The sliding-mode control, SMC, is a variable high-speed switching feedback control. The main

advantages of SMC are robustness to plant dynamics and disturbances [I0-20]. However, SMC may

suffer robustness in performance as a result of unknown plant dynamics and control rate or magnitude

constraints.

Existence of a sliding mode requires stability of the state trajectory to the sliding surface s(x) = 0

at least in a neighborhood of {xl s(x) = 0}. The largest such neighborhood is called a region of

attraction. The existence problem of a sliding mode can be based on the second method of Lyapunov.

That is, a general Lyapunov function, V(t,x), which is positive definite and has a negative first time

derivative in the region of attraction. Consequently, the existence and uniqueness of solutions to SMC

results from the method of Filippov, such that [10-13]

s(x)_(x) < 0. (25)

4.2 Feedback Linearization

Feedback linearization is an approach to control a nonlinear system by transformation into a fully

or partly linear one so that linear control techniques can be applied [13,18]. In this respect, consider the

single input, single output nonlinear system

= f(x,u) , (26)

y = h(x)

where x E Rn; u, y are scalars.

Our objective is to make the output y(t) follow the desired trajectory yd(t) within the bound of the

state, where yd(t) and its derivatives are assumed to be known and bounded. Here input-output

linearization, in which relative degree is less than system dimension n, is considered. In this case, it is

assumed that zero dynamics which is the dynamics of the system subject to the constraint that the output
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is zero, must be exponentially minimum phase. The main idea is to repeatedly differentiate the output

y until the output y is related to the input as follows:

= Vh(f + gu) = Lfh(x) + Lg h(x)u (27)

where L_(x) isa Lie-derivative[13,181.

IfLgh(x) isnot equal to zerofor allx in the neighborhoodXo, we shoulddifferentiateuntil

LgL[:lh(x);_ 0 forsome integerr which isrelativedegreeofr of thesystem. Then the controllaw

u- I (-Lfrh(x)+v)

Lg L[ -Ih(x)

(28)

results in the linear differential relation

form

y (r) = v . (29)

When r < n, there exists a diffeomorphic coordinate transformation (_',r/) = T(x) for the normal

d

dt

a(f,n)+b(f,n)u

(30)

where

= y = h(_) = _'1
(31)

r-I hi T_" = [h Lfh ... Lf

7/ = ['t/1 ...?In_r] T
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a(_,7/) = Lf rh(x) (32)

b(g',r/) = Lg Lfrh(x) (33)

Now the control law is

1
u = _ [-a(Lr/) +vl (34)

b(_,_)

which results in the linear differential relation

If

y(r) = v

r-I

yd(r) + _ -ai e(i)
i=O

where e = y - Yd such that pr + ar_lpr-1 + ... + aoe is a Hurwitz polynomial, then the tracking error

e will converge to zero as time t goes to infinity and the internal state _/ will be bounded, II_ II < a,

where _5is positive.

For the multi-input, multi-output system

/¢ = f(x) + gl(x) u I + ... + gm(X) Um

or

= fix) + G(x)u (35)

y = h(x)

24



Forsomej-th termj = 1, ..., m

m

j'j = Lfhj + E (LgiLfhj) ui
i=l

(36)

If

Lg i hi(x) = 0

for all i, we have to differentiate until at least one of the inputs appear in yjrj.

Then

m r j-1
Y;J = L; j ÷ E Lg iLf hjuj

I=1

(37)

In matrix form

Yr = F(x) + B(x)u (38)

where

rl rm]TYr = Yl "'" YmJ
(39)

rl rm ITF(x) = Lf h I ... Lf h m
(40)

B(x) =

I r 1-1 r I-1

Lg ILf h 1 "" Lg mLf h 1

rm-I rm-I

Lg!Lf h m ".. Lg mLf h m

(41)

If E-l(x) exists, control law

u = -B-I(x)F(x) + B-l(x)v (42)
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where

v = Iv 1 ... vm] T

results in

(43)
yr = v

If B-l(x) does not exist, we must use another method such as a dynamic-equation algebraic method.

4.3 Continuous Sliding-Mode Control with Linearization

In classical SMC, chattering is inevitable due to measurement errors, finite switching time, etc.

In this section, the continuous sliding-mode control with I/O linearization is developed, which may have

the desirable features of SMC while possibly rejecting the major cause of chatter. For the SISO case the

output is obtained after

yr = L_h(x) + LgL_-lh(x)u.

Select a sliding surface

where

differentiating several times until it is related to the input by

References [21-24] are followed in the approach used here.

s = pT Yr-1 (44)

= pT Yr (45)

and

Yr = [e ... er] T

26



Theslidingconditionsevolvefrom

sg = spTYr = spT[6 ... e r] (46)

r : ( r-1 ) r (47)er = y r _ Yd = L h + LgLf h u - Yd

Using (47) and (46) results in

If

s, =spT I6... er-lL:h+(LgL_-lh)u-Yd r]

= sPl _ + sP2 _ +... + SPr_ 1 e r-1 + sP r [L:h

= sPrLgL: -lh [ {u

T

+ LgL h h u - Yd

-Spr

( r-a)-I( 0,-I ,'-Iu = - SPr Lg Lf h sPl _ + sP2 _ + ... + SPr_ 1 - SPr ydr - SPr Lg Lf h
(48)

)2 (49)sg = -sPrLgL: -lh < 0

For the multi-input, multi-output case, the attractivity condition for SMC towards S = 0, _ = 0

becomes STS < 0.

Let the sliding surface S = [s 1 ... Sm]T for some j-th term, j = 1, ..., m

rj-I

Sj = E Cji eji
i=O

(5O)
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rj-1

_j: efJ÷ E _j,i-_ej
i-1

q q
= Lf hj - Yd + (LgL _Ij)ui+ E Cj,i-I ej i

i=l i=l

(51)

In the matrix form

S

" rl_ 1
I

i_0.= Cl, i el

rm-1

i=0

__ E : [E 1 ... Em] T
(52)

S=er+E ' (53)

where

rl rm]Te r = e 1 ... e m J

_

r1-1
i

E Cl,i_1 e I
i=l

= i

rm-1

E Cm,i-1o'_
i--1

Using equation (51), for some j (53) results in

r E'_;= Lfrh -ya + + Bu (54)

where
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r rL h -Yd +E

r 1-1
rl i

L:ihl- Yd 1 + E Cl,i-I el
i=l

rm-1
, rm rm i

_'f hm- Yd m + E Cm,i-lem
i=1

(55)

yr [yq rm,]T= d I "" Yd
(56)

E = E ...E m
(57)

rj-I
s

Ej -- E cj:_1ej_
i--I

j = l,...,m (58)

I1 = [U1 ... am]T.

B is the same as equation (41). Therefore, sliding condition

r ) + ET BusTs = E T Lfrh-yd +E'

: Iu..: /
IETBI 2

(59)

o=/:_)-T:(,:,_y:,_.}._/_T_)T
IETBI 2

where

K is positive definite matrix, then

sTs = -E TBK(E TB) T < 0 (6O)
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4.4 Simulation

The plant is the simplified second-order longitudinal motion of a high-alpha airplane [1] with

:, = 9.168 Cz(O0 + q - 1.8366 (/ie + 7) + 7.361904

q= 5.73(Cm ot+ Cm6e6e) + 2.865

(61)

where c_ is the angle of attack in degrees, q is the pitch rate in degrees per second, and t5e is the elevator

control in degrees.

CMf = -1 , Cm6c = -1.5

and

-0.07378494ot , et < 14.36
Cz(Ot) = 0.09722a 2 -2.8653cr + 20.03846, 14.36 < cr < 15.6

-0.01971 ot2 + 0.74391 ct -7.80753, 15.6 < ct < 19.6
-0.47333 -0.01667c_ , 19.6 <_ ct < 28

Let x 1 = c_, x2 = q, and the output y = _, then

:c= = f(x) + g_5e
:k2

(62)

where

gT = [-1.8366 -8.595] .

Uncertainty in f and g were considered as Gaussian noises with variance of unity.

Here, for convenience and smoothness, we let the desired trajectory

Yd = C_desired = (A- oto)e-xt- (A- 2C_o)e TM (63)
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where

A = 18 °

% = the equilibrium value with [% %] = [3.20444632 0]

de = -1.8029642

Xl = 5, x2 =-1

Here, it was assumed that

(64)

V = 3'd + k +I lO t edt + kle

where k 1 = -16, k = 10, and I = -164 so that the tracking error will be reduced with a damping ratio

0.617 and natural frequency 12.96 rad/sec.

Figures 9 to 14 show the simulated feedback-linearized controlled responses for a change in angle

of attack ot from 0 ° to 18 ° in a few seconds according to command (63). These use the control of (64)

with k = I = 0 for Figs. 9 and 10 and without uncertainty and disturbance for Figs. 9 and 11. Figures

13 and 14 use SMC with linearization. For SMC with linearization, the sliding surface is given by s =

Ple = Pl(Y'Yd) where Pl = 1. Using equation (48) and (62), the control input is u = -gil(fl-_'d) - sPlg 1.

The last two figures demonstrate the success of SMC with feedback linearization (nonlinear control)

relative to the other runs. The constant affine term, derivative, and integral terms are all found to be

beneficial for both cases. The nonlinear control (NLC) magnitude, however, is the only one within the

physical constraints when uncertainty and disturbance is considered.

It must be realized that this is only a first study of a single sliding-mode control used in conjunction

with feedback linearization. It must be studied with the more complex model for larger variations in

angle of attack where further dynamic uncertainty is considered along with control rate and acceleration

constraints. In any event, such controllers can be used for comparison with more robust nonlinear

controllers and linear controllers.
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5. OTHER PRELIMINARY STUDIES

5.1 Bilinear-Based Adaptive Control

Bilinear systems (i.e., systems linear in state, linear in control but not jointly linear) represent

perhaps the simplest class of nonlinear systems and, indeed, considers the first nonlinear terms in the

Taylor series approximation beyond linearization [4]. Bilinear systems (BLS) may be further justified

for aircraft dynamic approximation beyond conventional linearized models since lift and drag aerodynamic

stability derivatives do depend on control surface variation. For high-performance aircraft using more

control, such parametric control terms become more dominant, lead to improved controllability and

performance, and here the BLS becomes a first natural approximation beyond linear systems. Indeed,

linear analysis fails to predict the desired performance gains and may fail to lead to a stabilizing design

for sufficiently large rapid maneuvers. While analytical results for nonlinear systems are somewhat rare,

a considerable base for analysis and design has been developed for BLS [4].

The MAC design studied in Section 2 uses a generalization of bilinear terms to compute a nonlinear

model-based adaptive controller. Further analysis will consider the effectiveness of such bilinear-based

control. But here we consider another approach which could lead to a simple nonlinear feedback

configuration or could be used as a basis for nonlinear PIF control.

As a BLS model reference consider the discrete equation

in

Xk+l = AkXk + Bk Uk + E Nki ukixk
i--1

where, for example, x T = [_ q 0 v] is comprised of angle of attack, pitch rate, pitch, and air speed. The

control u may include, for example, stabilator and thrust vector mechanisms with an error vector ek taken

about some desired trim state or trajectory.

For a first design approach select a quadratic Lyapunov function in ek (and possibly control rate

of change). An effective stabilizing controller can then be generated in terms of quadratic and linear
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feedback terms -- the quadratic term being most effective for large errors and the traditional linear

feedback most effective for small errors [4]. Detailed design and simulation are in progress.

5.2 Neural-Net-Based Control

A preliminary study has been started on dynamic aircraft modeling and control by means of

artificial neural networks. One approach utilizes the time-optimal control study summarized in Section

3.

The main idea of the approach is to utilize the approximating capabilities of neural networks to

extract the closed-loop information from open-loop optimal trajectories. The synthesis of the feedback

time-optimal controller for a general nonlinear plant is very often untractable from the analytical point

of view. On the other hand, powerful theory and many efficient numerical algorithms exist for the open-

loop problem that allow us to calculate optimal trajectories for given initial and final constraints. Those

trajectories, however, contain information about optimal feedback. For a sufficiently regular optimal

control problem with integral quality index the principle of optimality assures that an instantaneous value

of control is a function of the current state, unique up to a set of measure zero. Hence, it may be written

that

u °Pt(t) = g(x(0)

Each point of an optimal trajectory may be viewed as a point on a hypersurface representing a

mapping g. If sufficiently many time-optimal trajectories are collected and sampled the mapping g may

be reconstructed. We propose to use multilayered neural networks to do so. Their capabilities as

function approximators are widely used in the system and control area to extract complex nonlinear

functions from discrete measurement data. The theoretical basis for those applications is a result stating

that given any continuous finite-dimensional function defined over a compact set there exists a feed-

forward neural network with one hidden layer which approximates the function arbitrarily closely in a

uniform sense. Since continuous-function compact sets are dense in L2, a network approximating optimal
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control mapping g in a mean-square sense is guaranteed to exist, and one of the training algorithms

minimizing the mean-square error may be used. The advantage of this approach is that instead of solving

the nonlinear optimal feedback synthesis problem we deal with an easier problem of calculating open-loop

trajectories for different initial conditions.

For the second-order model described above time-optimal control strategies were approximated

using a simple single-layer neural net. Time-optimal transition was considered to the equilibrium points

corresponding to angle attack equal 0, 5, 10, 15, and 20. First five separate neural networks were

trained to approximate the time-optimal strategies for these five target points. To train a network to

approximate the mapping

tSopt = g °Pt(ct,q)

a set of open-loop optimizations was performed for different starting points. Then resulting time-optimal

trajectories were sampled every 0.05 s. For the model in question the time-optimal control is of a bang-

bang type. Training data for the three typical cases is shown for the second-order nonlinear model in

Fig. 15 with "*" signs corresponding to the control value 0 and "+" signs corresponding to value of -20.

Figure 15 requires some comment.

The data was used to train five neural networks with two inputs (et and q), one output (_), and one

hidden layer of 20 neurons. Sigmoid neurons were used in both hidden and output layer. Each network

was trained off-line and training lasted 2000 iterations (epochs). In each case, very good approximation

of function was obtained.
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DESIGN

1. INTRODUCTION

Two nonlinear algorithmic controllers, MAC, are studied here. One uses a

block-canceling Volterra approximation, and the other MAC consists of solving an

approximating polynomial time series instate and control. Both methods synthesize

discrete control sequences and are applied successfully to the control of a simple

nonlinear longitudinal aircraft model for large variations in angle of attack.

The Volterra-series approach used here was introduced by Modyaev and Averina

[1], and a form of inverse generating control according to an assumed structure is

presented by Harris [2]. This work formed the basis for the methods used here. The

high angle-of-attack aircraft model derived by Stalford, et al. [3] was the plant

simulated for the MAC application. In many traditional design studies, a sequence

of linearized perturbation models are derived for different equilibrium flight

conditions with linear controllers appropriately derived. Linear adaptive control can

be derived according to nonlinear gain scheduling of the control law. A highly

successful version of such control, which includes proportional plus integral plus filter

(PIF) terms, is presented by Ostroff [4,5]. However, such designs usually require a

large number of set-point design computations, and may have stability problems for

large fast changes in angle of attack and/or mach number.

For generation of the nonlinear control, a nonlinear time-series based model

reference is used. In order to identify such model, experimental data was collected

for angle of attack (a) and pitch rate (q) subject to random steps of control



(stabilator,6). To capture such phenomena as limit cycles in the data the steps were

rather long (40 s). There were 64 such steps with time discretization of 0.1 s

resulting in 25,600 points in a state plane for 64 values of control.

data fit, the following approximation wasFor a least-squares simulated

surprisingly accurate:

=(k.l) =

q(k+l) =

pl.=(k) . p=.==(k)+ ps.a3(k) .

p4.q(k) + ps.q(k)¢(k) * po=q(k)¢=(k)+ pz.q(k)¢a(k) +

Po.u(k)* pg.u(k)=(k)+ plo.U(k)=2(k)* p,.u(k)=3(k) * P12=

plq=(k) + P2q==(k)+ p_..a(k) .

P.,4q(k)* p._q(k)¢(k) • p_q(k)=2(k) + pzqq(k)=a(k).

p_qu(k) + p_u(k)=(k) + ploqu(k)¢2(k)+ p,qu(k)=a(k) + P12q

(1)

Even limit cycles are accurately rendered by this model, as well as the stable zone

behavior, although large discrepancies occur when the control values are close to the

stable/unstable zones border.

2. ADAPTIVE CONTROL APPROACHES

2.1 Nonlinear Volterra-Based Control

Here, as in [6], the Voiterra series serves as a conceptual starting point for a

nonlinear time series base control. Continuous time controllers based on Volterra

series were systematically developed in [7] with formulae for the controller's kernels

given those of the plant and of the desired feedback system. In particular, the

problem of so-called exact feedback iinearization was solved here. However, those

formulae may be of limited practical value because of the properties of Volterra

series under feedback. The problem is that even finite (e.g., second order) Volterra

series of the open loop results in infinite Volterra series of the closed loop. This

makes it necessary for the controller to include theoretically an infinite number of



compensatingtermsevenfor aquadratic system. The same problem for the discrete

time systems was treated in [1] with multidimensional Z transforms to derive the set

of formulae equivalent to those for so-called exact feedback linearization [8].

However, they also provided a very elegant transformation of which results in a

controller requiring only as many Volterra terms as there are in the assumed plant.

One attractive feature of this controller is that its structure makes it possible to

utilize it not only with models represented in the form of Volterra series, but in fact

with any model with easily divided linear and nonlinear parts of the dynamic

equations such as (2) above.

The following algorithm results:

a) according to the linear part of the plant, calculate the linear control UL(k)

b) calculate the predicted value of the output at the moment k

9(k) = L(y(k-1) .....ytk-M),u(k-li .....u(k-M))

N(y(k-1),...,y(k-M),u(k-1),...,u(k-M)

c) solve the "iinearizing" control equation for x(k) such that

N(9(k),y(k-1) .....y(k-i+l),UL(k)-x(k),u(k-1) .....u(k-a+l)) =

=L(x(k),x(k-1),...,x(k-i+l),9(k),y(k-1),...,y(k-i+l))

3) calculate the control by

u(k)= UL(k)- x(k)

This algorithm becomes a sort of prediction controller which tries to estimate the

effects of the previous controls knowing the previous values of outputs and then to

adjust the current value of control so that the nonlinear part of predicted output is

canceled.

This discrete time nonlinear a control algorithm is generated according to an off-

line identification of model (1) with a nonlinear aircraft simulation based on [3].

Also, a linear controller was designed according to the linear parts of (1)-(3).

The design was performed to obtain the closed loop model reference behavior

of the form



G(z) = 0.05/(z = - 1.6z . 0.65)

In order not to cancel the zero of the plant, the observer polynomial (z-0.7) was

introduced. The algorithm for the control value u(k) is as follows. First the estimate

of the output at moment k is calculated from (1) with k replaced by k-1.

Then it can be shown that the control becomes

u(k) + Ps=UL(k) - (P2"_= + P3=&3 + Ps'_q + Pe'_l;'2 + PT"_l_'a + P12=) (4)
(Pea + Pg,=& + PI0=&2 + P11,,_fl)

with &(k) and el(k ) designating estimates taken from (1). It is seen that if there are

no nonlinearities in the model the control reduces to a regular linear controller

U=U L.

Simulations were run to test the controller performance especially in the

unstable range of angle of attack. The system is successfully stabilized and the

transients are very smooth and without significant overshoots for the nonlinear

control as demonstrated by Figure la. By different choice of the reference model

it is possible to obtain much faster, but at the same time much more "nervous"

transients. The elevator control is also relatively smooth and within the range

corresponding to the terminal equilibria. As can be seen from Figure lb, the similar

linear control is unstable.

2.2 On-Line Adaptive MAC Algorithm

1

Model algorithmic control (MAC), described for example in [2], consists of

solving the model equation for the value of control necessary to obtain required

value of output. Usually this desired output trajectory is generated form the setpoint

by means of a reference model. In case this model is linear, the algorithm in essence

becomes a linearizing one.



Here,thecontrolledoutputisassumedto be theangleof attacksuchthatthe

referenceequationbecomes:

=_(k+1) = a_(k÷1) . (,,(k-l) - _(k-1)) (sl

with

amoa(k*l) : pT_(k)

$(k) : [E, E', E3, q, qE, qa 2, qa 3, U, Ua, UE2, ua 3, 1]T(k)

&(k) = pr¢(k-1) * (it(k-l) - =rood(k-I))

_l(k) = pqr¢(k-1) * (q(k-1) - qmod(k-1))

The controller is assumed to know the values of angle of attack and of pitch rate at

the moment k-1. Then it estimates their current values ,,(k) and q(k) taking into

consideration previous prediction errors and based on them it calculates the control

required to achieve ¢=f at the moment k+l. The value of control is found as:

Er - Pl=a - P2. a2 - P3=_3 P4=dl- Ps.Cl_ - P6=Cl_2 - Pz._l_3 - P12=
u(k) =

where

Ps= * Pg=E + Plo=_t_ * P11.as

(6)

d r = er,_(k+l) -(¢=(k-1) - Crook(k-I))

and a = &(k), q = _l(k) as described above.

The results of the simulations are seen in Figures 2a,b. The,reference trajectory

was chosen to be 1/z2-1.6z+0.65). The actual output of the plant is seen to follow

the reference very closely, even though the region of operation was that of the most

severe nonlinearities. The control action is also remarkably smooth.

The discrete time nonlinear state space model (1) describes the behavior of the

complex nonlinear plant quite accurately in the entire region of operation. In

practice, however, such a global model is rather difficult to fit, and consequently one



shouldlookfor localapproximations, depending on the current operating conditions.

In such a situation, on-line adaptive control seems to offer an ideal solution.

The algorithm discussed in the previous section can be made adaptive, or self-

tuning, by incorporating on-line identification of the parameters. A recursive least

squares (RLS) algorithm was implemented in the following form taken from [8]:

p(k) = O(k-2) _(k- 1) e(k)
X(k-1) + _(k-1)TO(k-2) _(k-2) _(k-1)

(7)

Q(k-1) = 1 (Q(k-2)- Q(k-21_(k-1}4_(k-1)TO(k-2) /_.(k-l---_ _.(k-1) . _(k-1)TO(k-2) _(k-1))
(s)

e(k-1) = y(k) - pT_(k-1) (9)

where y may denote a or q and p may stand for p, or pq, respectively. The forgetting

factor _. was introduced to enable the algorithm to change the estimates of

parameters with the change of operating conditions. To avoid the unlimited growth

of covariance matrix Q at the steady state when the input is not persistently exciting

the variable forgetting factor policy was implemented:

_.(k) = 1 - e e(k)= (io)
2

where e(k) is the current prediction error, e(k) is the average prediction error form

last 10 samples and e is equal to 0.01. As an additional precaution the trace of the

covariance matrix Q was monitored and Q was reset to diagonal matrix whenever the

threshold value was exceeded. Starting values of parameters were taken to be as in

0).

Figure 2 displays the simulation results for a reference model specified as

1/(2-1.8z+0.82). Remarkably exact following of the reference trajectory may be

observed, although, surprisingly enough, the performance is slightly worse than in the

nonadaptive case. Most probably this is due to the fact that prediction error now

changes much more quickly because of the ongoing identification process. Thus,

approximating the term (y(k+l)-y,_(k+l)) by 0,(k-1)-y,_(k-1)) may worsen the



behaviorof the systemastwo valuesof Y,,on no longer correspond to the same

parameter vector. Since the on-line identification process assures (at least in

principle) that the prediction error should asymptotically converge to zero it is

possible that the correction terms in ¢t(k), q(k), and in control equation (5) ought to

be omitted.

The performance of the adaptive nonlinear MAC controller was compared to

the linear one, which uses the same control strategy but with a strictly linear model

being identified and used for the calculation of the control action. Clear difference

between the performance of linear and nonlinear controller can be seen from Figure

3, particularly in control action at the setpoint a -- 15". The linear identifier has

obvious difficulties with fitting the parameters of a linear model to the behavior of

the plant which is highly nonlinear in this region. As a result, the control starts

oscillating for a while. Also, it was seen that the nonlinear algorithm results in

control plots that are more smooth, although they still contain one-pulse spikes. To

eliminate these spikes weighting of the increments of control can be introduced into

the algorithm with little performance deformation.

4. CONCLUSIONS

The nonlinear control applications to high angle-of-attack aircraft, as reported

here, is of a preliminary nature. However, the analysis does suggest that nonlinear

adaptive control can be quite effective to stabilize large rapid maneuvers in angle of

attack. Of the comparisons made, the on-linear, nonlinear-time-series and adaptation

performed the best and was quite superior to a similar linear MAC.
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Summary

The stability analysis of an airplane using its nonlinear model is

presented. The analysis is based on the robust stability analysis

approach for linear systems. Then, based on analysis, a small

static feedback gain is designed such that the robustness of the

closed-loop nonlinear system stability is significantly improved.
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I. INTRODUCTION

The stability is one of the most important issues in the control

system design. Recently there has been observed a great interest

in the methodology of robust stability analysis and design of

robust control systems for linear dynamic systems [6]. The

objective of this paper is to investigate the applicability of

this approach for nonlinear dynamic system such as an aircraft

flight in high angle of attack/sideslip flight. The unstable

control system can result in the plane crash.

There is considered stability of nonlinear,

model of the airplane. The organization

follows. In section 2, the model of the

Stability of the aircraft is considered in

concluding remarks are given.

simplified however,

of the paper is as

plane is presented.

section 3. Finally,

2. THE AIRCRAFT MODEL.

Model of an airplane is highly nonlinear, [4,5].

usually, however, used simplified models for control

design, e.g. [1,3,9]. In this paper we consider very simple

given in [8]:

x=A(x)x+Bu+D

There are

system

model

(i)

F~I

where x=i_ , is a state vector, _ is the angle of attack in

degrees, q is the pitch ratio in degrees per second and u is the

elevator control in degrees,

A= "168Cz (_) B= " D=

- 73 ' 595 ' 2 865000]

and c (_) is a nonlinear function. This function can, however,
Z

approximated as follows:

be



c (_)
Z

-0.072815870 for

0.088470922-2.3774/_ for

= 0.033099050-1.4068/_ for

-0.016633734-0.4743/_ for

0 ° s _ s 14.74 °

14.74 ° < _ s 17.40 °

17.40 ° < _ s 18.87 °

18.87 ° < _ s 28.00 °

(2)

It is easy to find that

-0.072818087 < c (_) _ -0.048161261
Z

-0.047751524 < c (_) _ -0.041453149
z

-0.041768869 < c (_) _ -0.033573019
Z

for

for

for

14.74 ° < _ s 17.40 °

17.40 ° < _ s 18.87 °

18.87 ° < _ _ 28.00 °

This model approximates model taken from measured wind tunnel

values of the T-2C airplane [7]. It is known that numerical values

of Cz(_) and b 2 are uncertain.

Our purpose is to consider stability of system (I) in the range of

angle of attack 0°_28 °, and to find a static feedback which can,

eventually, improve the stability of the plane in this range.

3. STABILITY ANALYSIS.

Consider linear time-invariant system

x=ix (4)

where xeR n is a state vector. Then, assuming that the system is

asymptotically stable one can define the following notions, [2].

Definition i.

A connected set _I in the system parameters-space

matrix A) is a robust time invariant stable (RTIS) set

(4) iff Ae_ I and every time-invariant system

(parameters o _

for system

x=_ (5)

is asymptotically stable for _DI"

rl



Definition 2.

A connected set _V in the system parameters-space is a robust time

varying stable (RTVS) set for system (4) iff A_ V and every time-

varying system (5) is asymptotically stable for _V"

Q

Then, consider four linear models instead of (2), respectively:

{ 0.072815870 for 0 ° s _ _ 14.74 °
Cz(_ ) = -0.048161261 for 14.74 ° < _ _ 17.40 °0.041453149 for 17.40 ° < _ s 18.87 ° (6)

0.016633734 for 18.87 ° < _ s 28.00 °

It is easy to find that all models are asymptotically

are, however, interested in the set of (kl,k 2) such that

linear closed loop systems will be stable with the

feedback

u=Kx, K=[k I k2]

stable. We

all the

following

(7)

An appropriate region _I can be easily calculated based on

algorithm 2 proposed in [2]. This is, however, only the second

order system and one can simply obtain analytical formulas for the

RTIS region in this case. The characteristic polynomial for the

2nd order system has the following form

s2+as+b=0

It is known that all roots of this polynomial are in the left half

plane, i.e. a system is asymptotically stable stable, iff a>0 and

b>0. Based on this, the RTIS region _I for 'stable' feedback gains

was calculated. The region is presented on fig. I, a dashed line

represents RTIS region for model Pl, 0°_14.74 °, a dotted model

P2 for 14.74°<_17.4 °, a dash-dotted model P3 for 17.40°<_18.87 °

and a continuous line model P4 for 18.87°<_28 ° It is easy to see

that the system without feedback, i.e. kl=k2=0, sign + on the

plane (kl,k2), is very close to the stability region boundary. One

can improve stability assuming appropriate K from _i(kl,k2).

4



Next, RTVS sets DV were calculated for these models, according to

the algorithm given in [2], for uncertain parameters all and a21

in A. They are presented on fig. 2. All four models are inside the

RTVS region calculated for the model P4. Moreover, since all time

varying (nonlinear) all=9.168Cz(_) is smaller than nominal values

used in linear models it means that the whole nonlinear system (i)

is asymptotically stable for 0°s_28 °. However, there is a very

small upper bound for all in this model, namely

+&all < 0.0227

This can cause that with small system uncertainty the

be unstable. The vertexes of RTVS quadrilateral _V on

(Aall,Aa21) are as follows:

system can

the plane

Vv0 = { (-176.5,0), (0.0226,0), (0,-0.2274) (0,0.2944) }

In order to improve system stability feedback gain matrix K was

chosen from _I" Intuitively, it seems that a good gain is a small

one - a high gain can result in a lack of system controllability

because of saturation of the control input, and such that the

stability margin with respect to K will be rather large.

Thus, the good choice seems to be KI=[0 0.2]. For this gain one

obtains significant improvement of RTVS set. This set is shown on

fig. 3. In this case also all models are inside the nil calculated

for the model P4. However, an upper bound for all is more than 8

times greater:

+_all < 0.1835

Also range for uncertain parameter a21 is almost 6

Indeed, the vertexes of RTVS quadrilateral in this

plane (Aall,Aa21) are as follows

times larger.

case on the

VVI = { (-25049,0), (0.1835,0), (0,-3.547), (0,3.211) }

5



Then, it was considered feedback gain K2=[0.2 0]. This gain,

however, seems to be worse situated in the RTIS set _I than K1
considering the stability region with respect to K. Nevertheless,

also in this case one obtains improvement of robust stability for

the closed loop system. The appropriate RTVS set _V is shown on

fig. 4. In this case an upper bound for all is as follows

+bail < 0.0613

Similarly, range for perturbation in a21 is larger than

The vertexes of RTVS set _V2 are as follows

for K=0.

VV2 = { (-65.15,0), (0.0613,0), (0,-0.5770), (0,1.3641) }

It should be noted that all RTVS

assumption Q=I in algorithm 3 [2].

sets were calculated under

From the above analysis follows that relatively small static

linear feedback gain K=[0 0.2] significantly improves stability

of the system. It should be emphsized that every nonlinear/time-

varying system (i) with all and a2! from the obtained RTVS set _V2

will be asymptotically stable. This way we have designed a robust-

stable nonlinear closed-loop system.

4. CONCLUDING REMARKS.

A robust-stable nonlinear controlsystem has been designed. It is

shown that small linear static feedback gain can significantly

improve stability of the airplane. The feedback gain seems to be

so small that it should not constrain control signal during plane

maneuvering. This should also results in better a controllability

of the plane.

The stability analysis and feedback gain synthesis were done using

methods designed for linear systems [2]. This, approach can be

also used for more complicated nonlinear systems. For instance,



assuming as a base model for the airplane, the linear 9th order

model given in [1,9]. This model is unstable, but, as it was shown

in [2], one can deal also with unstable models using the same

approach.

Presented results also show the power of the approach proposed in

[2] .
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Fig. 2. The RTVS region for P!. P2, P3, P4 with K=[0, 0]
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Fig. 3. The RTVS region for P!,P2, P3, P4 with K'[O,O.2]
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Fig. 4. The RTVS region for P1, P2, P3, P4 with K-[0.2,0]

r ...... II

!

p..'

i { ."

. I I I . |

-4 -3 -2 -_

811

I

0

i

I

t
I

.i

1




